predictive process control using artificial neural networks (anns) and a combined method of regression analysis and anns
نویسندگان
چکیده
this is the first attempt at process modeling in terms of predictive control using a hierachical method based on regression analysis and artificial neural networks (anns). this hierachical method leads to the reliability improvement of neural model of the process in predicting (extrapolation and interpolation) the process output. such an outlook makes it possible to predict the proper input settings which can achieve a desired process output by designing various scenarios for process set up. this approach is applied to tile industry for spray drying process and in order to determine the amount of improvement, two models (i)neural model of process taking general approach using multilayer perceptron based on back propagation algorithm and (ii)mixed-regression neural model of process taking focus approach in architecture of neural model are designed to evaluate the reliability of prediction of spray drying process output via three criteria. these criteria include mean relative error, root mean squre error and coefficient of determination. the results indicate that the mixed regression-neural model leads to the best results in prediction (extrapolation and interpolation) of spray drying process output.
منابع مشابه
Monthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملArtificial Neural Networks (ANNs) for EEG Purging using Wavelet Analysis
The Electroencephalogram (EEG) is a biological signal that represents the electrical activity of the brain. Artifacts in EEG signals are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). The removal of artifact from scalp EEGs is of considerable importance for analysis of underlying brainwave activity. The presence of artifacts such as muscl...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملRainfall - Runoff Modelling Using Artificial Neural Networks ( ANNs )
Over the last decades or so, artificial neural networks (ANNs) have become one of the most promising tools for modelling hydrological processes such as rainfall-runoff processes. In most studies, ANNs have been demonstrated to show superior result compared to the traditional modelling approaches. They are able to map underlying relationships between input and output data without detailed knowle...
متن کاملShort-term wind forecasting using artificial neural networks (ANNs)
The integration of wind farms in power networks has become an important problem. As electricity cannot be preserved because of the highest cost of storage, electricity production must following market demand, necessarily. Short-long term wind forecasting over different time steps is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based on ...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools for modelling hydrological processes such as rainfall runoff processes. However, the employment of a single model does not seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process that varies in space and time. For this reason, this study aims at...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مدیریت صنعتیجلد ۱، شماره ۳، صفحات ۰-۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023